Summerfields Primary School

Design Technology Curriculum Overview

Our Ultimate End Goal:

At Summerfields Primary School, we believe that design and technology helps to prepare children for the developing world and encourages them to become curious and creative problem-solvers, both as individuals and as part of a team. Through the study of design and technology, they combine practical skills with an understanding of aesthetic. Children are encouraged to engage with this subject both within lessons and with whole school home learning challenges. Previous challenges have included 'the egg drop' and a paper aeroplane challenge. We aim to develop imaginative thinking in children and to enable them to talk about what they like and dislike when designing and making. We will enable children to talk about how things work, and to draw and model their ideas; whilst encouraging children to select appropriate tools and techniques for making a product, making sure they follow safe procedures.

This will foster enjoyment, satisfaction and purpose in designing and making.

Curriculum Coverage (NC)
 What are the most basic requirements from the National Curriculum?

- generate, develop, model and communicate their ideas through talking, drawing, templates, mock-ups and, where appropriate, information and communication technology

Make

- select from and use a range of tools and equipment to perform practical tasks [for example, cutting, shaping, joining and finishing]
- select from and use a wide range of materials and components, including construction materials, textiles and ingredients, according to their characteristics

Evaluate

- explore and evaluate a range of existing products
- evaluate their ideas and products against design criteria

Technical knowledge

- build structures, exploring how they can be made stronger, stiffer and more stable
- explore and use mechanisms [for example, levers, sliders, wheels and axles], in their products

Cooking and nutrition

- use the basic principles of a healthy and varied diet to prepare dishes
- understand where food comes from

Make

- select from and use a wider range of tools and equipment to perform practical tasks [for example, cutting, shaping, joining and finishing], accurately
- select from and use a wider range of materials and components, including construction materials textiles and ingredients, according to their functional properties and aesthetic qualities

Evaluate

- investigate and analyse a range of existing products
- evaluate their ideas and products against their own design criteria and consider the views of others to improve their work
- understand how key events and individuals in design and technology have helped shape the world

Technical knowledge

- apply their understanding of how to strengthen, stiffen and reinforce more complex structures
- understand and use mechanical systems in their products [for example, gears, pulleys, cams, levers and linkages]
- understand and use electrical systems in their products [for example, series circuits incorporating switches, bulbs, buzzers and motors]
- apply their understanding of computing to program, monitor and control their products.

Cooking and nutrition

- understand and apply the principles of a healthy and varied diet
- prepare and cook a variety of predominantly savoury dishes using a range of cooking techniques
- understand seasonality, and know where and how a variety of ingredients are grown, reared, caught and processed.

```
A note about the pedagogy:
At Summerfields, we will use the six essentials of good practice in D&T:
-USER: Children should have a clear idea of who they are designing their project for - considering needs, wants, interests or preferences
-PURPOSE: children should know what the products they design and make are for. It should perform a clearly defined task that can be evaluated in use.
-FUNCTIONALITY: Children should design and make products that function in some way to be successful.
```


-DESIGN DECISIONS: Children need opportunities to select materials, components and techniques
 -INNOVATION: Children need scope to be original in their thinking and need open starting points

-AUTHENTICITY: Children should design and make believable, real and meaningful products.
Each of the learning experiences will ensure that the children have 3 stages of learning:

1) Investigative and Evaluative Activities: Children learn from a range of existing products, learning about D\&T in the wider world
2) Focused Tasks: Where they are taught specific technical knowledge, designing skills and making skills
3) Design, Make and Evaluate Assignment: where children create functional products with users and purposes in mind

This Curriculum Map is supported by the Design and Technology Association's (DATA) Project on a Page which will give the teaching team a starting point for their planning.

Procedural Knowledge - What skills do we want our pupils to have to support [subject]?
How will these skills build on what went before and help prepare our children for what is coming next?

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Design	Can have own ideas and clarify them through discussion Can explain what my product is for, and how it will work Can use my own experiences when developing ideas Can use pictures and words to plan, beginning to use models Can research similar	Can explain what I want to do and describe how I may do it Can describe design using pictures, words, models, diagrams and begin to use ICT Can explain purpose of product, how it will work and how it will be suitable for the user Can design products	Can begin to consider and research others' needs when designing Can show that a design meets a range of requirements Can describe the purpose of a product Can follow a given design criteria	Can use research to develop design ideas Can show design meets a range of requirements and is fit for purpose Can begin to create own design criteria Can produce a plan and explain it to others Can include an annotated sketch in	Can use information sources including questionnaires and the internet to help develop design ideas Can begin to consider needs/wants of individuals/groups when designing to ensure product is fit for purpose Can create own design criteria	Can draw on market research to inform design Can use research of user's individual requirements for design Can identify features of a design that will appeal to the intended user Can create own design criteria and specification

			understand by whom, when and where products were designed Can learn about some inventors/designers /engineers/chefs/m anufacturers of ground-breaking products	/engineers/chefs/m anufacturers of ground-breaking products	made and whether they are fit for purpose Can talk about some key inventors/designers /engineers/chefs/m anufacturers of ground-breaking products	evaluations of existing products considering: how well they've been made, materials, whether they work, how they've been made and whether they are fit for purpose Can research and discuss some key inventors/designers /engineers/chefs/m anufacturers of ground-breaking products
Make	Can explain what I am making and why Can select tools and equipment to cut, shape, join and finish, explaining choices Can measure, mark out, cut and shape with support Can choose suitable materials and explain choices	Can explain what I am making and why it fits the purpose Can make suggestions for what I need to do next Can select from a range of tools, describing reasons for choices Can select suitable materials considering	Can select suitable tools and equipment, explaining choices Can begin use selected tools and equipment accurately Can select appropriate materials that are fit for purpose	Can select suitable tools and equipment, explaining choices in relation to required techniques Can use selected tools and equipment with increasing confidence and accuracy Can select	Can select appropriate materials that are fit for purpose, considering functionality Can produce a suitable list of tools, equipment and materials needed Can use selected tools and equipment with a good level of precision	Can select appropriate materials that fit for purpose, considering functionality and aesthetics Can select appropriate tools and equipment Can use selected tools and equipment precisely

					making	purpose?
Evaluate	Can talk about my work, linking it to what I was asked to do Can begin to talk about what could make a product better	Can describe what went well, thinking about design criteria Can talk about what I would do differently if I were to do it again why	Can use criteria to evaluate finished product Can say what I would change to make the design better Can begin to identify strengths in own and other children's work, according to the criteria	Can use criteria to evaluate product Can begin to explain how I could improve the original design Can identify strengths in own and other children's work, according to the criteria	Can evaluate other children's work against original specification Can adapt their work according to their views and describe how they might develop it further Can evaluate ideas and finished product against specification, considering purpose and appearance Can evaluate their design ideas as these develop, bearing in mind the users and the purposes for which the product is intended, and indicating ways of improving their ideas	Can evaluate their own and others' products against the original specification, stating if it's fit for purpose Can test and evaluate final product; explain what would improve it and the effect different resources may have had Can consider the views of others to improve a piece of work Can consider the impact of products beyond their intended purpose
Technical Knowledge	Can describe some different	Can join materials in	Can use appropriate	Can measure carefully to avoid	Can select materials carefully,	Can use techniques to reinforce and

Materials/ structures	characteristics of materials	different ways Can use joining, rolling or folding to strengthen a product Can use own ideas to try to make products stronger Can measure and join materials, with some support	materials Can work accurately to make cuts and holes Can use techniques to join materials Can begin to make strong structures	mistakes Can use techniques to attempt to strengthen a product Can make a strong, stiff structure	considering the intended use of the product, the aesthetics and the functionality Can use different techniques to strengthen a product	strengthen a 3D frame Can measure accurately enough to ensure precision Can ensure product is strong and fit for purpose
Technical Knowledge Mechanisms	Can begin to use levers or slides Can begin to understand how to use wheels and axles	Can use simple levers and linkages to create movement	Can use pneumatics to create movement	Can use more complicated levers and linkages with both fixed and loose pivots to create movement	Can begin to use cams and gears to create movement	Can use cams, pulleys and gears to create movement Can incorporate hydraulics and pneumatics
Technical Knowledge Textiles		Can choose suitable textiles Can measure, cut and join textiles to make a product, with some support	Can measure and carefully cut textiles to produce accurate pieces with support Can join textiles together to make a product, explaining how	Can measure and carefully cut textiles to produce accurate pieces Can join textiles together using stitches to make a product Can explain choices	Can consider the user and final product when choosing textiles, considering appearance and functionality Can think about how to make a	Can use own template Can think about user and aesthetics when choosing textiles Can begin to understand that a single 3D textiles

				of textile Can understand that a 3D textile structure can be made from two identical fabric shapes Can make and/or use a simple paper pattern/template	product strong Can begin to devise a template Can explain how to join things in a different way Can understand that a simple fabric shape can be used to make a 3D textiles project	project can be made from a combination of fabric shapes Can demonstrate a range of ways to join materials
Technical Knowledge Electrical systems				Can use a simple circuit in a product	Can use a number of components in a circuit in a product	Can confidently use a number of components in a circuit to improve a product Can incorporate a switch into a product Can use different types of circuit in a product (series, parallel) Can think of ways in which adding a circuit would

| | | | | | spreading, kneading
 and baking | how food can be
 grown, reared or
 caught in the UK
 and the wider world | Can use a range of
 techniques
 confidently such as
 peeling, chopping,
 slicing, grating,
 Can use a range of
 techniques such as
 peeling, chopping,
 slicing, grating,
 mixing, spreading,
 kneading and
 kneading and
 baking |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| baking | | | | | | | |

Propositional Knowledge - What key concepts or knowledge will we need? What knowledge do we want to emphasise? How will knowledge be built on what went before and prepare our children for what is coming next?						
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Mechanisms - sliders and levers (Christmas cards) *Know the correct technical vocabulary for the projects that they are undertaking * Know about the simple working characteristics of materials and components *Know about the movement of simple mechanisms such as levers, sliders, wheels and axles Mechanisms - wheels and axels (toy car)	Structures freestanding structures (enclosures for farm or zoo animals) * Know the correct technical vocabulary for the projects that they are undertaking * Know about the simple working characteristics of materials and components * Know how to make freestanding structures stronger, stiffer and more stable. Textiles - Templates and joining techniques (glove puppets)	Textiles - 2-D shape to 3-D product (pouch) * Know the correct technical vocabulary for the projects that they are undertaking * Know that a 3-d textiles product can be assembled from two identical fabric shapes * Know how to strengthen, stiffen and reinforce existing fabrics. * know how to securely join two pieces of fabric together. * know about the need for patterns and seam	Food - Healthy and varied diet (sandwiches) * Know the correct technical vocabulary for the projects that they are undertaking * Know how to use appropriate equipment and utensils to prepare and combine food. * Know about a range of fresh and processed ingredients appropriate for their product, and whether they are grown, reared or caught Mechanical systems Levers and linkages (mechanical poster)	Structures - frame structures (kite) * Know the correct technical vocabulary for the projects that they are undertaking * Know how to strengthen, stiffen and reinforce 3-D frameworks Mechanical systems Cams (moving planet toy) * Know the correct technical vocabulary for the projects that they are undertaking * Know that mechanical	Food - celebrating culture and seasonality (savoury scone) * Know the correct technical vocabulary for the projects that they are undertaking * Know how to use utensils and equipment including heat sources to prepare and cook food * Know about seasonality in relation to food products and the source of different food products Electrical systems More complex switches

What key vocabulary will our designers need? Vocabulary is important because it embodies and communicates concepts.

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Mechanisms - sliders and levers slider, lever, pivot, slot, bridge/guide card, masking tape, paper fastener, join pull, push, up, down, straight, curve, forwards, backwards design, make, evaluate,	Structures freestanding structures cut, fold, join, fix structure, wall, tower, framework, weak, strong, base, top, underneath, side, edge, surface, thinner, thicker, corner, point, straight, curved metal, wood, plastic	Textiles - 2-D shape to 3-D product fabric, names of fabrics, fastening, compartment, zip, button, structure, finishing technique, strength, weakness, stiffening, templates, stitch, seam, seam allowance user, purpose,	Food - Healthy and varied diet name of products, names of equipment, utensils, techniques and ingredients texture, taste, sweet, sour, hot, spicy, appearance, smell, preference, greasy, moist, cook, fresh, savoury	Structures - frame structures frame structure, stiffen, strengthen, reinforce, triangulation, stability, shape, join, temporary, permanent design brief, design specification, prototype, annotated sketch, purpose, user, innovation, research,	Food - celebrating culture and seasonality ingredients, yeast, dough, bran, flour, wholemeal, unleavened, baking soda, spice, herbs fat, sugar, carbohydrate, protein, vitamins, nutrients, nutrition, healthy, varied, gluten, dairy, allergy,

What experience do we want our students to have had? What other opportunities will our students have had in.......?						
			Children should learn about inventors, designers, engineers chefs and manufacturers who have developed ground-breaking products and in doing so, made the world a better place. Year 3: Stella McCartney / Robert Thomson Year 4: Isambard Kingdom Brunel / Jamie Oliver Year 5: Galileo Galilei / Vivienne Westwood Year 6: Nikola Tesla / Hugh Fearnley-Whittingstall			
EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Mechanisms - sliders and levers Year 1 will make moving Christmas cards to share with their families. Mechanisms - wheels and axels The children will design and make their own toy	Structures freestanding structures The children will design and make an enclosure for zoo animals Textiles - Templates and joining techniques Year 1 will learn sewing skills to make glove	Textiles - 2-D shape to 3-D product The children will build on the skills they learned in year to design and make a pouch Food - Healthy and varied diet Year 3 will prepare and	Food - Healthy and varied diet Year 4 will prepare and make nutritious sandwiches for their families Mechanical systems Levers and linkages The children will design	Structures - frame structures Year 5 will design and make a kite Mechanical systems pulleys and gears The children will make their own mini orrery	Food - celebrating culture and seasonality Year 6 will prepare and make nutritious savoury scones Electrical systems More complex switches and circuits The children will use

